This documentation is automatically generated by online-judge-tools/verification-helper
#include "data_structure/dinic.hpp"
#pragma once
#include<bits/stdc++.h>
using namespace std;
using ll=long long;
template< typename flow_t >
struct Dinic {
const flow_t INF;
struct edge {
int to;
flow_t cap;
int rev;
bool isrev;
int idx;
};
vector< vector< edge > > graph;
vector< int > min_cost, iter;
Dinic(int V) : INF(numeric_limits< flow_t >::max()), graph(V) {}
void add_edge(int from, int to, flow_t cap, int idx = -1) {
graph[from].emplace_back((edge) {to, cap, (int) graph[to].size(), false, idx});
graph[to].emplace_back((edge) {from, 0, (int) graph[from].size() - 1, true, idx});
}
bool bfs(int s, int t) {
min_cost.assign(graph.size(), -1);
queue< int > que;
min_cost[s] = 0;
que.push(s);
while(!que.empty() && min_cost[t] == -1) {
int p = que.front();
que.pop();
for(auto &e : graph[p]) {
if(e.cap > 0 && min_cost[e.to] == -1) {
min_cost[e.to] = min_cost[p] + 1;
que.push(e.to);
}
}
}
return min_cost[t] != -1;
}
flow_t dfs(int idx, const int t, flow_t flow) {
if(idx == t) return flow;
for(int &i = iter[idx]; i < graph[idx].size(); i++) {
edge &e = graph[idx][i];
if(e.cap > 0 && min_cost[idx] < min_cost[e.to]) {
flow_t d = dfs(e.to, t, min(flow, e.cap));
if(d > 0) {
e.cap -= d;
graph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
flow_t max_flow(int s, int t) {
flow_t flow = 0;
while(bfs(s, t)) {
iter.assign(graph.size(), 0);
flow_t f = 0;
while((f = dfs(s, t, INF)) > 0) flow += f;
}
return flow;
}
void output() {
for(int i = 0; i < graph.size(); i++) {
for(auto &e : graph[i]) {
if(e.isrev) continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << e.cap + rev_e.cap << ")" << endl;
}
}
}
};
#line 2 "data_structure/dinic.hpp"
#include<bits/stdc++.h>
using namespace std;
using ll=long long;
template< typename flow_t >
struct Dinic {
const flow_t INF;
struct edge {
int to;
flow_t cap;
int rev;
bool isrev;
int idx;
};
vector< vector< edge > > graph;
vector< int > min_cost, iter;
Dinic(int V) : INF(numeric_limits< flow_t >::max()), graph(V) {}
void add_edge(int from, int to, flow_t cap, int idx = -1) {
graph[from].emplace_back((edge) {to, cap, (int) graph[to].size(), false, idx});
graph[to].emplace_back((edge) {from, 0, (int) graph[from].size() - 1, true, idx});
}
bool bfs(int s, int t) {
min_cost.assign(graph.size(), -1);
queue< int > que;
min_cost[s] = 0;
que.push(s);
while(!que.empty() && min_cost[t] == -1) {
int p = que.front();
que.pop();
for(auto &e : graph[p]) {
if(e.cap > 0 && min_cost[e.to] == -1) {
min_cost[e.to] = min_cost[p] + 1;
que.push(e.to);
}
}
}
return min_cost[t] != -1;
}
flow_t dfs(int idx, const int t, flow_t flow) {
if(idx == t) return flow;
for(int &i = iter[idx]; i < graph[idx].size(); i++) {
edge &e = graph[idx][i];
if(e.cap > 0 && min_cost[idx] < min_cost[e.to]) {
flow_t d = dfs(e.to, t, min(flow, e.cap));
if(d > 0) {
e.cap -= d;
graph[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
flow_t max_flow(int s, int t) {
flow_t flow = 0;
while(bfs(s, t)) {
iter.assign(graph.size(), 0);
flow_t f = 0;
while((f = dfs(s, t, INF)) > 0) flow += f;
}
return flow;
}
void output() {
for(int i = 0; i < graph.size(); i++) {
for(auto &e : graph[i]) {
if(e.isrev) continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << e.cap + rev_e.cap << ")" << endl;
}
}
}
};